STERILITY ASSURANCE COMPLIANCE

A GUIDE FOR MEDICAL DEVICE MANUFACTURERS

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>PART 1 – AAMI/ISO Sterilization Validation Guidelines</td>
<td></td>
</tr>
<tr>
<td>Sterility Assurance Program – Prevalidation Checklist</td>
<td>3</td>
</tr>
<tr>
<td>Ethylene Oxide Sterilization – Validation Requirements</td>
<td>4</td>
</tr>
<tr>
<td>Gamma or Electron Beam Radiation Sterilization</td>
<td>7</td>
</tr>
<tr>
<td>PART 2 – Description of Validation Tests and Northview Services</td>
<td></td>
</tr>
<tr>
<td>Sterilization Process Validation Protocol</td>
<td>12</td>
</tr>
<tr>
<td>Sample Item Portion (SIP) Preparation</td>
<td>12</td>
</tr>
<tr>
<td>Bioburden Method Validation</td>
<td>13</td>
</tr>
<tr>
<td>Bioburden Enumeration</td>
<td>14</td>
</tr>
<tr>
<td>Bacteria Identification</td>
<td>15</td>
</tr>
<tr>
<td>Bacteriostasis/Fungistasis Test</td>
<td>15</td>
</tr>
<tr>
<td>AAMI/ISO Dose Audit</td>
<td>16</td>
</tr>
<tr>
<td>Sterility Testing</td>
<td>17</td>
</tr>
<tr>
<td>Why Northview Should Conduct Your Sterility Tests and Dose Audits</td>
<td>18</td>
</tr>
<tr>
<td>Microbial Environmental Monitoring</td>
<td>19</td>
</tr>
<tr>
<td>Accelerated Aging – Expiration Dating Study</td>
<td>21</td>
</tr>
<tr>
<td>Real Time Aging – Expiration Dating Study</td>
<td>21</td>
</tr>
<tr>
<td>Package Integrity Testing – Environmental and Microbial Challenge</td>
<td>21</td>
</tr>
<tr>
<td>Bacterial Endotoxins (LAL) Test</td>
<td>22</td>
</tr>
<tr>
<td>Ethylene Oxide Residuals Analyses</td>
<td>23</td>
</tr>
<tr>
<td>ISO Guidelines for Sterilant Residues</td>
<td>24</td>
</tr>
</tbody>
</table>

DOWNLOAD REQUEST FOR ANALYSIS

Rev. 2.5, 3-01.pdf
INTRODUCTION

A common goal of medical device manufacturers is to produce safe products. Sterility is essential to the safety of many medical devices. Most single use devices are terminally sterilized by ethylene oxide gas or gamma or electron beam radiation. The sterilization process must be validated for each product to verify that it effectively and reliably kills any organisms that may be present on the pre-sterilized product. By means of the cGMP medical device regulations, FDA has established some of the requirements for an acceptable sterility assurance program. More specific guidelines for validation of the sterilization processes are developed and published by AAMI in conjunction with ISO.

The first part of this booklet outlines AAMI/ISO requirements for the validation of ethylene oxide sterilization cycles and radiation sterilization doses. The second part contains more detailed information about tests that are integral to effective quality assurance systems for sterile medical devices.

We recommend that clients review current AAMI publications which pertain to the method of sterilization used for their products. Some of the more relevant publications are listed below. To obtain these documents, contact AAMI at 703-525-4890, 800-332-2264 or www.aami.org.

Sterilization of health care products—Requirements for validation and routine control—Radiation sterilization, AAMI/ISO 11137

Sterilization of Health Care Products—Radiation Sterilization—Selection of a Sterilization Dose for Single Production Batch, AAMI/ISO TIR No.15844

Medical devices—Validation and routine control of ethylene oxide sterilization, AAMI/ISO 11135

Biological evaluation of medical devices—Part 7: Ethylene oxide sterilization residues, AAMI/ISO 10993-7

Sterilization of medical devices—Microbiological methods, Part 1: Estimation of population of microorganisms on products, AAMI/ISO 11737-1

The FDA Division of Small Manufacturers Assistance (DSMA) can assist medical device manufacturers with cGMP compliance issues. Advice is available on the following topics:

- GMP issues
- Sterility and Biocompatibility
- 510K, PMA, IDE
- Electronic Docket /Facts-on-Demand
- Publications only
- In Vitro Diagnostic Products

DSMA – Rockville, MD
800-638-2041 or 301-443-6597
Fax: 301-443-8818
www.fda.gov/cdrh/dsma/dsmamain.html

In FDA regional offices, small business representatives provide information and advice about FDA regulatory issues. Call your local office to speak to a DSMA representative.

- Northeast Region – Brooklyn, NY 718-965-5300
- Southeast Region – Atlanta, GA 404-347-4001
- Central Region – Chicago, IL 312-353-9400
- Southwest Region – Dallas, TX 214-655-8100
- Pacific Region – Oakland, CA 510-637-3980
STERILITY ASSURANCE PROGRAM

PREVALIDATION CHECKLIST

• Evaluate candidate materials, components and packaging compatibility with ethylene oxide gas, gamma or electron beam radiation sterilization processes. Material manufacturers and contract sterilizers can assist with this evaluation.

• Select method of sterilization.

• Screen materials for biocompatibility.

• Northview offers comprehensive biocompatibility testing services in accordance with FDA, ISO and AAMI Guidelines. For more information, please call for a complimentary copy of Northview's booklet Assessing Biocompatibility. For additional assistance, please call Tracy Brunn or Dr. Tim Doherty at 510-964-9000.

• Manufacture finished devices. *(Be sure to manufacture enough for both biocompatibility testing of finished devices and your sterilization validation.)*

• Conduct finished device biocompatibility testing.

• Select your contract sterilizer and execute a contract sterilization agreement with them.

• Submit a product sample to Northview for evaluation.

• Select validation methodology in consultation with contract sterilizer and Northview.

• Generate sterilization process validation protocols for both physical and microbiological aspects of validation.

• Send samples for initial phase validation testing to Northview, i.e. bioburden method validation, bioburden, sample item portion preparation (if required), bacteriostasis/fungistasis test.

• Schedule physical validation (e.g. dose map study or EO chamber qualification).

• Schedule post-sterilization microbiological testing with Northview.

STERILITY ASSURANCE LEVEL

Sterility is defined as the state of being free from viable microorganisms. A sterility assurance level (SAL) is defined as the probability of an item being nonsterile after it has been exposed to a validated sterilization process. Most medical devices are sterilized to achieve a SAL of 10^{-6}, which is the probability of one in a million items being nonsterile. Any sterile medical device that may be sold in Europe must be sterilized at a SAL of 10^{-6}. In the USA, some less critical devices (e.g. specimen cups) are sterilized at a SAL of 10^{-3}. In setting up a validation program, the sterility assurance level that will be required for the medical device must be chosen.
ETHYLENE OXIDE STERILIZATION

CYCLE VALIDATION - MICROBIOLOGICAL REQUIREMENTS

OVERKILL METHOD (AAMI/ISO 11135 METHOD C)

The overkill method, in one form or another, is the approach most commonly used to validate ethylene oxide cycles used in the sterilization of medical devices. The overkill method is based on demonstrating the sterilization of a microbial challenge that exceeds the challenge posed by the bioburden of the product.

VALIDATION PROTOCOL

For an initial validation, a protocol should be prepared which outlines the overall validation requirements. The protocol should describe the medical device and specify the test procedures that will be used. Please see page 11 for more details.

- Please submit one sample to Northview for evaluation.

BIOBURDEN METHOD VALIDATION

The method that will be used for routine determination of product bioburden levels must be validated to insure that it is effective in recovering microorganisms from the product and that it allows for adequate growth of the recovered microorganisms. The validation procedure should be selected in consultation with Northview. This study will determine if it is necessary to apply a recovery factor to routine bioburden test results. Please see page 12 for more details.

- Repetitive (Exhaustive) Recovery Method – 5 nonsterile samples are recommended. A minimum of 3 samples is required.
- Product Inoculation (Simulated) Recovery Method – 5 sterile samples are recommended. A minimum of 3 samples is required.

BIOBURDEN ENUMERATION

The bioburden level of the product must be determined. For most products, aerobic bacteria and fungi bioburden are appropriate. For products with no recent bioburden history, AAMI/ISO recommends the testing of 10 samples from each of three production lots. It is most appropriate to sample the production lots that will be used in the three validation cycles. The bioburden samples may be selected to represent various production or packaging times. The samples should be collected immediately prior to sterilization. Please see page 13 for more details.

- 10 nonsterile samples from each of three production lots are recommended.

BACTERIOSTASIS/ FUNGISTASIS TEST

The proposed method for sterility testing of product samples must be validated to insure that false negatives would not occur. Sterile samples are required for B/F testing. If sterile samples are not initially available, the B/F samples can be run with the fractional or half-cycles. Please see page 14 for more details.

- 6 sterile samples are required.
MICROBIAL CHALLENGE – USE OF BIOLOGICAL INDICATORS

For the validation study, biological indicators (B.I.s) are used to challenge EO cycles. The indicator organism is *B. subtilis var. niger*, a spore forming bacteria with well characterized resistance to the EO sterilization process. Most commonly, *B. subtilis* spore strips with a population of 10^6 colony forming units (cfu) per strip are used.

PRODUCT VS. B.I. RESISTANCE TO EO

One purpose of the validation process is to support the use of *B. subtilis* biological indicators as a release mechanism for the product following routine EO processing. This can be done by means of one or more fractional cycles. For products with a bioburden of consistently less than 100 cfu, one fractional cycle is required. For products with higher bioburden levels, three fractional cycles may be required.

After EO processing in fractional cycles, both the product and the spore strips will be tested for sterility. Generally, this test will demonstrate that the spore strips are more resistant to the EO process than the product. If this is verified, it is only necessary to test the spore strips after EO processing in the half cycles. For the half cycles, the spore strips must be placed in the product in same manner that was used in the fractional cycle.

B.I. PLACEMENT AND QUANTITY REQUIRED

Before processing in EO cycles, the biological indicators must be placed within the product inside the product package. The product must be evaluated to determine appropriate locations to place the B.I.s. The area of the device that presents the greatest potential challenge to gas penetration should be selected.

The ISO/AAMI guideline recommends calculating the appropriate quantity of B.I.s based on usable chamber volume as follows: 20 B.I.s for the first 5 m^3 of chamber volume, 2 B.I.s for each additional m^3 between 5 m^3 and 10 m^3 and then 1 B.I. for each m^3 beyond 10 m^3.

- A minimum of 20 biological indicators is required.

INCLUSION OF EXTERNAL B.I.S

The use of external B.I.s as a release mechanism for routine EO processed products may be validated as part of the initial sterilization validation. This could eliminate the loss of product associated with allocating samples for B.I. placement and sterility testing. In addition to the B.I.s placed within the product, a second set of B.I.s is placed outside of product packages and processed in the fractional cycles. (Some customized packaging of the B.I.s is usually required to increase their survivability.) Sterility test results must indicate that the external B.I. has a similar or greater resistance to the EO process than the B.I. located within the product.

PRODUCT LOAD CONFIGURATION

For validation cycles, the maximum quantity of product representing the densest load configuration that will be processed in full routine cycles must be loaded in the EO sterilizer chamber. The product w/B.I. test samples must be widely distributed throughout the sterilizer chamber. A placement diagram must be prepared. The diagram must indicate the location of the product w/B.I. test samples plus temperature and humidity sensors in the loaded chamber.
EO CYCLE PARAMETERS AND MONITORING

All EO cycles must be run using sterilization equipment that has been calibrated and for which IQ and OQ processes have been completed. Verify equipment status with the contract sterilizer before initiating the validation cycles. The parameters for the fractional, half and full cycles must be established in consultation with the contract sterilizer. During validation cycles, the temperature of the product at several widely distributed locations should be monitored and compared with the chamber control temperature. The monitored locations should include some where product w/B.I. test samples are located. The sterilizer chamber EO concentration and the chamber and product humidity should also be monitored.

MICROBIAL VALIDATION – SAMPLE PROCESSING

Each cycle load is preconditioned for the designated minimum time and then processed in the sterilizer chamber using the previously defined parameters. The product w/B.I. test samples must be removed from the load either before aeration or after the minimum routine aeration time. The product w/B.I. test samples should be sent to Northview for sterility testing via same day or next day delivery service.

- 1 to 3 fractional cycles - products and B.I.s to be tested for sterility
- 3 half cycles – B.I.s only to be tested for sterility
- 3 full cycles – B.I.s only to be tested for sterility

For the full cycles, data from the first 3 routine processing loads will be included to support the initial EO sterilization validation. The microbial validation is acceptable if the sterility test results for all of the B.I.s from the half cycle are negative. The sterility testing of B.I.s from full cycles must verify half cycle results.

ETHYLENE OXIDE RESIDUALS TESTING

To complete the validation of the EO sterilization process, ethylene oxide residuals testing of the sterile medical device is required. AAMI/ISO has published standards for EO residuals limits. Please see page 22 for more details.

- At least 2 sterile samples and 1 unsterilized control sample are required

ROUTINE CYCLE MONITORING

As a result of the validation process, the use of B. subtilis spore strips in release testing for routine sterilization loads will likely be validated. Routine sterilization loads should be monitored with 10 to 20 biological indicators. It is a common practice to calculate the appropriate quantity of B.I.s based on usable chamber volume as follows: 10 B.I.s for the first 5 m³ of chamber volume, 1 B.I. for each additional m³ between 5 m³ and 10 m³ and then 1 B.I. for each m³ beyond 10 m³. An unexposed positive control B.I. should be sent to the lab with each group of exposed B.I.s. The load can be released following acceptable sterility testing of the B.I.s.

ROUTINE BIOBURDEN MONITORING

Product bioburden is an important indication of the microbiological cleanliness and control of the manufacturing process. Control of product bioburden is required to maintain a validated sterility assurance level. Many factors can affect product bioburden. Among these are changes in materials, vendors, manufacturing personnel, procedures or equipment, water systems used in manufacturing and seasonal changes. Therefore, we strongly recommend a minimum of quarterly bioburden testing for all routinely produced sterile medical devices, regardless of the means of terminal sterilization.

REVALIDATION

AAMI/ISO recommends one annual requalification cycle to verify the effectiveness of the sterilization process. If any significant changes are made in the product, packaging or manufacturing, a complete revalidation is required.
RADIATION STERILIZATION

AAMI/ISO METHODS

DOSE VALIDATION REQUIREMENTS

Several AAMI/ISO methods are available for validation of the radiation dose used to sterilize a medical device. All of the methods use product bioburden enumeration and a bioburden organism resistance test which is referred to as the verification dose resistance experiment. The most appropriate methodology is selected based on the projected production schedule and size. The three most commonly used methods are summarized below.

When planning a validation, be sure to manufacture enough samples for the entire validation study. Depending on the product’s availability and complexity, an initial validation study can generally be completed in 6 to 8 weeks. Cost is contingent on product size and complexity.

AAMI/ISO 11137 METHOD 1 (For Large and Frequent Production Batches)

Dose Setting Method 1 outlined in AAMI/ISO 11137, Sterilization of health care products—Requirements for validation and routine control—Radiation sterilization is the validation method most commonly used for products frequently manufactured in lots of greater than 1000 products. The initial validation includes bioburden testing of three separate lots and a verification dose resistance experiment on 100 samples from one lot. Revalidation consists of quarterly bioburden testing of 10 samples and dose audit testing of 100 samples from a production lot.

AAMI/ISO 15844 (For Large but Infrequent Production Batches)

AAMI/ISO TIR No. 15844, Sterilization of Health Care Products—Radiation Sterilization—Selection of a Sterilization Dose for Single Production Batch, provides a radiation validation procedure when only one lot of product is produced. This document is used in conjunction with AAMI/ISO 11137 to establish a sterilization dose based on bioburden testing of 10 samples and a verification dose resistance experiment on 100 samples from the single lot.

VD-MAX METHOD (25 Kgy/10^-6 SAL for Low Bioburden Products)

This method is used to establish 25 kGy as the sterilization dose for products manufactured frequently or infrequently in large or small batches. It is limited to products with a bioburden of <1000 cfu. For the validation of a single lot, 10 products are tested for bioburden and then a dose audit is performed on 10 products irradiated at the verification dose. For frequently produced lots, the initial validation includes bioburden testing of 10 products from each of 3 separate lots and then a dose audit of 10 products from 1 lot. Revalidation consists of quarterly bioburden testing of 10 products followed by a dose audit of 10 products from the same lot.

AAMI/ISO 11137 METHOD 2

Method 2 requires a large number of samples to be dosed and tested. Consequently, it is more time consuming and expensive than other methods. It is a good method for products with a problematic bioburden or when achieving the lowest possible routine production dose is desired. Please call if you are interested in a Method 2 validation.

AAMI/ISO TIR 13409

This method validates 25 kGy for small production batches of products with a bioburden of <1000 cfu. For the validation of a single lot, it requires bioburden testing of 10 products and a dose audit of 10 – 90 products, depending on the size of the production lot. Because of TIR 13409’s higher sample requirements
and a greater chance of dose audit failure with low bioburden products, we expect the VD-MAX method to be normally used instead. Please call if you interested in a TIR 13409 validation.
RADIATION STERILIZATION

VALIDATION STAGES

VALIDATION PROTOCOL
For the initial validation, a protocol outlining the overall validation requirements must be generated. The protocol should define the device (or product family) and specify the test procedures that will be used. Please see page 11 for additional information.

• Please submit one sample to Northview for evaluation.

SAMPLE ITEM PORTION (SIP) PREPARATION
For some large devices, it may be necessary to use a simulated, scaled-down version of the product for bioburden testing and the verification dose resistance experiment. For complex devices, disassembly and/or sectioning may be required prior to irradiation and testing. Each product must be evaluated individually to determine an appropriate SIP preparation procedure. The number of samples required for SIP preparation is the total of that required for both bioburden enumeration and the verification dose resistance experiment. Please see page 11 for additional information.

BIOBURDEN METHOD RECOVERY VALIDATION
The method that will be used for routine determination of product bioburden levels must be validated to ensure that it is effective in recovering microorganisms from the product and that it allows for adequate growth of the recovered microorganisms. The validation procedure should be selected in consultation with Northview. This study will determine if it is appropriate to apply a recovery factor to routine bioburden test results. Please see page 12 for more details.

• Repetitive (Exhaustive) Recovery Method – 5 nonsterile samples are recommended. A minimum of 3 samples is required.
• Product Inoculation (Simulated) Recovery Method – 5 sterile* samples are recommended. A minimum of 3 samples is required.
 * Nonsterile samples may be acceptable for low bioburden products (< 100 CFU). If the sterilization produces change in product material, nonsterile product should be used for this test.
• Screening for the Release of Adverse Substances – 9 sterile samples are required.

BIOBURDEN ENUMERATION
The bioburden level of the product must be determined. For most products, aerobic bacteria and fungi bioburden are appropriate. The bioburden samples may be selected to represent various production or packaging times. The samples should be collected so that they are representative of the product just prior to sterilization. Please see page 13 for more details.

• For AAMI/ISO 11137 Method 1, 10 samples from each of 3 production lots are required.
• For AAMI/ISO 15844, 10 samples from the individual production lot are required.
• For VD-MAX, 10 samples from the production lot are required for a single lot validation. For validation of frequently produced lots, 10 samples from each of 3 production lots are required.
BACTERIOSTASIS/FUNGISTASIS TEST

The procedure that will be used to perform sterility testing (the verification dose resistance experiment) must be validated by means of bacteriostasis/fungistasis testing. This testing will ensure that false negative results will not occur in the sterility test. A false negative result allows a nonsterile sample to appear sterile due to inhibition of the microbial growth. This type of reaction is caused by certain materials utilized in some medical devices, but can be overcome by modifications to the sterility test procedure.

- 3 sterile samples are required to validate the AAMI/ISO sterility test.
- 6 sterile samples are required to validate both the AAMI/ISO sterility test and the USP sterility test.

VERIFICATION DOSE RESISTANCE EXPERIMENT

The purpose of the verification dose resistance experiment is to determine if any of the organisms that are part of the product bioburden are unusually resistant to the radiation sterilization process. The resistance experiment consists of a sterility test of products which have been irradiated at a defined dose. The verification dose is calculated based on the bioburden data. Products from a single lot must be irradiated at the verification dose. For AAMI/ISO 11137 Method 1 and 15844, the dose is designed to deliver a 10^{-2} sterility assurance level. For VD-MAX the verification dose is at a 10^{-1} sterility assurance level. To interpret the verification dose resistance experiment results, refer to the table on page 10. For additional information about dose auditing, please see page 15.

- For AAMI/ISO 11137 Method 1 and 15844, 100 product samples from a single lot are required. Please submit 3 – 5 extra samples.
- For VD-MAX, 10 product samples from a single lot are required. Please submit 1 – 2 extra samples.

DOSE AUDITING – REVALIDATION

The dose release validation program must be audited quarterly for frequently produced products. For products produced less frequently than quarterly, each production lot is validated for release.

- For AAMI/ISO 11137 or 15844, 10 nonsterile samples from a single lot are required for bioburden testing and 100 dosed samples from the same lot are required for the dose audit. Please submit 3 – 5 extra samples for the dose audit.
- For VD-MAX, 10 nonsterile samples from a single lot are required for bioburden testing and 10 dosed samples from the same lot are required for the dose audit. Please submit 1 – 2 extra samples for the dose audit.
VERIFICATION DOSE TEST RESULTS – ACCEPTANCE AND ACTION CRITERIA

<table>
<thead>
<tr>
<th>Samples Tested</th>
<th>Positives Observed</th>
<th>AAMI/ISO 11137 Method 1 Acceptance and Action Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0 – 2</td>
<td>The initial validation or quarterly dose audit results are acceptable. The routine sterility assurance level dose is determined based on the bioburden test data or the dose calculated in the original study remains valid.</td>
</tr>
<tr>
<td>100</td>
<td>≥ 3</td>
<td>For an initial validation, investigate product bioburden. If appropriate and possible, identify and eliminate resistant organisms. Reestablish bioburden and dose. Perform a new verification dose resistance experiment.</td>
</tr>
<tr>
<td>100</td>
<td>3 – 4</td>
<td>For a quarterly audit, augment SAL dose based on new bioburden or assumed logarithmic increase in bioburden. Repeat verification dose experiment. If 2 or less positives on repeat, return to original SAL dose. If 3-6 positives on repeat, augment SAL dose, then reestablish SAL dose. If 7 or more positives on repeat, reestablish SAL dose.</td>
</tr>
<tr>
<td>100</td>
<td>5 – 6</td>
<td>For a quarterly audit, augment SAL dose based on new bioburden or assumed logarithmic increase in bioburden, then reestablish dose.</td>
</tr>
<tr>
<td>100</td>
<td>≥ 7</td>
<td>Reestablish Dose</td>
</tr>
</tbody>
</table>

Where AAMI Method 1 indicates to “Reestablish dose”, it is assumed that an alternate dose setting method will be used. Unless product bioburden can be successfully investigated and subsequently controlled, it is likely that further testing under Method 1 will continue to fail. Control of the manufacturing process and resulting product bioburden may be more desirable than switching to an alternate dose setting method.

<table>
<thead>
<tr>
<th>Samples Tested</th>
<th>Positives Observed</th>
<th>AAMI/ISO 15844 Acceptance and Action Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0 – 2</td>
<td>Validation testing results are acceptable. The sterilization dose is determined based on the bioburden test data.</td>
</tr>
<tr>
<td>100</td>
<td>≥ 3</td>
<td>Investigate product bioburden. If appropriate and possible, identify and eliminate resistant organisms. Reestablish bioburden and perform a new verification dose resistance experiment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Samples Tested</th>
<th>Positives Observed</th>
<th>VD-MAX Method Acceptance and Action Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0 – 1</td>
<td>Validation testing results are acceptable. The 25 kGy dose is validated for the production lot (for a single lot validation) or for 3 months if 3 lots were tested for bioburden.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Perform another dose audit of 10 samples exposed to the same verification dose. If there are 0 positives in the second test, the 25 kGy dose is validated. If there are any positives in the second test of 10 samples, the 25kGy dose is not validated. See action indicated below.</td>
</tr>
<tr>
<td></td>
<td>≥ 3</td>
<td>Investigate product bioburden. If appropriate and possible, identify and eliminate resistant organisms. Reestablish bioburden and perform a new verification dose resistance experiment or use an alternate dose setting method.</td>
</tr>
</tbody>
</table>
STERILITY ASSURANCE COMPLIANCE

PART 2 - TEST DESCRIPTIONS

- Validation Tests
- Routine Release Tests
- Related Sterility Assurance Tests

STERILIZATION PROCESS VALIDATION PROTOCOL

For an initial validation of the sterilization process for a medical device, a validation protocol is required. The validation protocol is an outline of the requirements of a proposed validation effort. The protocol will include a complete identification of the medical device, a statement of purpose, the name of the contract sterilizer, the name of the testing laboratory, a list of the tests that are required, references for the test procedures to be used and criteria that will be used to judge if the validation effort has been successful. Specific test procedures can also be provided to clients who request them.

Northview will customize a sterilization validation protocol to meet individual client requirements. Once the initial validation is successfully completed, no additional validation protocols are normally required for subsequent revalidation, i.e. quarterly dose audits or subsequent single lot validations for the same product using the same method. Please call Northview to discuss your sterilization validation requirements.

SAMPLE ITEM PORTION (SIP) PREPARATION

A sample item portion is a specially prepared portion of a medical device that is used in AAMI/ISO dose setting procedures. Some large or complex devices cannot practically be tested in their entirety. Using nonsterile samples, a defined portion of the device is aseptically removed and packaged. This portion (SIP) is used for the bioburden and verification dose studies.

For some complex devices, it may be necessary to disassemble or cut up the device so that it can fit into rinse fluid and media containers used for bioburden and verification dose testing. This disassembly or cutting must be done aseptically so that the natural bioburden of the product is not affected. It also must not reduce the challenge to the sterilizing process.

The adequacy of the SIP must be demonstrated by means of a sterility test of 20 SIP samples. The SIP is considered adequate if at least 17 of the samples are nonsterile.

Please submit a product sample to Northview for evaluation so that an appropriate SIP preparation procedure can be determined.
BIOBURDEN METHOD VALIDATION

AAMI/ISO Guideline 11737-1, Sterilization of Medical Devices – Microbiological Methods, Part 1: Estimation of Population of Microorganisms on Products, requires that the bioburden recovery test method be validated for each medical device. The purpose of this validation is to insure that the bioburden test method which will be used to determine the product bioburden level, is effective in recovering microorganisms that are present on the product. Insufficient recovery would result in underestimation of a product's true bioburden and could lead to an inadequate sterilization cycle or dose. The recovery data from validation testing will indicate if a recovery factor should be applied to results obtained by routine bioburden testing.

The bioburden method validation must be performed prior to proceeding with actual bioburden testing of the product. If any changes affecting materials, assembly or configuration are made to the product, the bioburden method should be revalidated.

REPETITIVE (EXHAUSTIVE) RECOVERY

This method uses the naturally occurring bioburden of the product. A bioburden test is performed on the same device three or more times. The counts obtained from the replicate extractions are used to calculate a percent recovery. Northview recommends this method for devices which have a moderate to high bioburden level and do not contain absorbent materials.

PRODUCT INOCULATION (SIMULATED) RECOVERY

This method simulates a product bioburden by inoculating a known amount of spores onto a sterile device. The device is then tested for bioburden with the same method proposed for use in routine analysis. The recovered level is compared to the known inoculation level and the percent recovery is calculated. Northview recommends this method for devices with low bioburden levels or complex configurations. It also may be used for devices which absorb the rinsing fluid used in bioburden tests. The method does have limitations, because the spore inoculation may not reproduce the adherence properties of the natural bioburden. Please note that sterile samples are usually required for simulated recovery tests.

SCREENING FOR RELEASE OF SUBSTANCES ADVERSELY AFFECTING BIOBURDEN ESTIMATES

Some medical devices are manufactured with materials that adversely affect the bioburden testing of that device. These materials, or substances that are extracted from these materials during bioburden testing, have bacteriostatic, bacteriocidal, fungistatic and/or fungicidal properties which damage or kill microorganisms removed from the product during the extraction phase of the bioburden test. AAMI/ISO 11137-1 includes a method that screens for the presence of these adverse substances. This method requires the inoculation of a known population of test organisms into a test container with the product and the bioburden extraction fluid. Following a holding period equivalent to that which occurs during routine bioburden testing, the test organisms are enumerated and compared to the initial population. If the counts are not similar, modification of the bioburden procedure is necessary.

This screening test should be performed when:

- The product contains materials which could have biocidal or biostatic effects.
- The repetitive or product inoculation results indicate low recovery.
- The product is liquid, gel or powder.
BIOBURDEN ENUMERATION

Bioburden is the population of microorganisms on a raw material, product component or finished medical device just prior to sterilization. For finished medical devices, the bioburden test data is used to establish parameters for an effective sterilization process. To insure the ongoing safety of the sterilization process, it is necessary to verify that the bioburden level remains consistent over time. There are two important aspects of product bioburden control – maintaining consistency from lot to lot and avoiding spikes within a lot. A bioburden spike occurs when the bioburden for an individual product is 2 or more times greater than the group average. A significant increase in the device bioburden would reduce the sterility assurance level of the sterilization process.

For new medical devices, ten randomly selected samples from three separate newly manufactured lots should be tested for bioburden. It is useful to track samples by date and time of assembly or packaging to determine when and where any inconsistencies may be occurring. After initial data is generated, bioburden tests should be conducted monthly to quarterly, depending on frequency and volume of production. It is also important to check bioburden levels whenever any changes are made in packaging locations, manufacturing processes, raw material vendors, or personnel involved with production. If bioburden data increases significantly or shows extreme variability, the manufacturing process should be investigated so that corrective measures can be implemented.

Bioburden studies are also used to monitor microorganism levels on materials that could effect the bioburden of the finished device, such as product components, manufacturing fluids and product packaging. The bioburden test data may provide useful information in the investigation of bioburden spikes and dose audit failures. Bioburden testing can also be used as a material qualifications tool.

To perform a bioburden test, a sample is aseptically transferred to an appropriate volume of extraction fluid and then mechanically agitated to remove microorganisms. Membrane filtration is the preferred method for the culturing and microbial enumeration of the extraction fluid. Northview uses this method for products with filterable extraction fluid. When the extraction fluid cannot be filtered, the plate count method is used. Bioburden results are reported on individual samples showing total aerobic count with a breakdown of bacteria and fungi. Anaerobic bioburden and heatshocking methods for enumeration of spores are also available upon request.

BIOBURDEN ANALYSES

- Bioburden Method Validation
 - Recovery Study - Repetitive Treatment (3 – 5 extractions/sample)
 - Recovery Study - Simulated (spore inoculation of products)
 - Screening for the Release of Adverse Substance Affecting Bioburden Estimates

- Bioburden – Total Aerobic Bacteria and Fungi by Filtration Method:
 - Small Devices (low level bioburden)
 - Medium Devices (moderate level bioburden)
 - Large Devices, Small Kits, Papers, Fabrics (higher level bioburden)

- Bioburden – Total Anaerobic Bacteria
- Bioburden – Total Aerobic Spores
- Bioburden – Process Fluids (Aerobic Bacteria by Filtration Method)
BACTERIA IDENTIFICATION

Many companies need to identify microorganisms found in their product or environmental samples. For bacteria identification, Northview uses the MIDI "Microbial Identification System" which runs on an automated Hewlett Packard gas chromatography system. The unknown bacteria is cultured using specific conditions and the fatty acids are extracted from the culture. The extract is analyzed using gas chromatography and a fatty acid profile is generated for the unknown. This profile is compared to fatty acid profiles of known bacteria in the MIDI library. Based on the similarity of the unknown to known bacteria, a statistical probability called a similarity index is assigned. The identification of one or more bacteria, along with a similarity index for each, is reported. Northview supports MIDI identifications with morphology, gram stain reaction and a series of biochemical tests. All of these test results are reported.

Another method used by Northview for bacteria identification is the API Identification System. A suspension of the test isolate is used to inoculate a strip containing various biochemical reagents. The positive or negative results of each biochemical are used to generate a unique code which corresponds to a specific microorganism.

The more appropriate identification method is determined based on preliminary general morphology recorded for the unknown:

- Gram positive rods – MIDI
- Gram negative rods, other bacteria – MIDI
- Gram negative rods, Enterobacteriaceae – API
- Gram positive cocci – API

BACTERIOSTASIS/ FUNGISTASIS TEST

The bacteriostasis/fungistasis test is designed to validate the procedure used to test a product for sterility by demonstrating that microorganisms present on the product will be detected in the course of the sterility test. The USP (and FDA) requires this test because some products contain substances that inhibit the growth of microorganisms. Although a product may harbor microorganisms and be nonsterile, the presence of growth inhibition substances can cause a falsely negative sterility test.

The test is conducted by performing a simulated sterility test, then adding low levels of selected bacteria and fungi as challenge microorganisms to the culture media. The organisms will remain viable, grow and be detectable in the culture media if the product does not exert a bacteriostatic or fungistatic effect. If the product is found to be bacteriostatic or fungistatic, the sterility test procedure must be modified and another bacteriostasis/fungistasis test must be performed. This testing should be performed on all new products and when any significant changes are made in the manufacturing or materials of an existing product. For medical devices, six sterile samples are normally required for the B/F test.

- Bacteriostasis/Fungistasis Test – Direct Transfer Method
 - 3 organisms in SCDM (Dose Audits)
 - 6 organisms – 3 in FTM and 3 in SCDM (USP)
AAMI/ISO DOSE AUDIT

A dose audit is a sterility test of samples which have been irradiated at a defined kGy level determined as part of an AAMI/ISO dose validation study. The AAMI/ISO standard requires that dose audits be performed quarterly for all devices that have had sterilization validation using AAMI/ISO 11137 Method 1 and VD-MAX for frequently produced lots. All samples are tested using Soybean Casein Digest Medium and incubated for 14 days at 30º±2ºC.

To determine a likely fee per sample, the information below may be used in conjunction with page 17 of our Schedule of Testing Services and Fees (please call if you need a copy). Compare the sample measurements with the container dimensions. The cost of a dose audit is usually based on the amount of medium required to test the sample. Samples which are difficult to aseptically handle will incur an additional charge. Samples which can be easily cut with scissors can be aseptically divided and possibly tested in smaller containers. To minimize the chance of a sample being compromised in sterility testing, it is highly desirable to minimize sample manipulation. We prefer to use the smallest container and volume which will allow the test sample to be submerged in media (although it is not always possible to completely submerge all samples). An appropriate media volume must be validated for each product by bacteriostasis/fungistasis testing.

MEDIA CONTAINERS USED FOR DOSE AUDITS

<table>
<thead>
<tr>
<th>Media Container</th>
<th>Dimensions</th>
<th>Orifice I.D.</th>
<th>Media Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture Tube</td>
<td>25 mm D x 150 mm H</td>
<td>25 mm</td>
<td>40 mL</td>
</tr>
<tr>
<td>Culture Tube</td>
<td>25 mm D x 250 mm H</td>
<td>25 mm</td>
<td>80 mL</td>
</tr>
<tr>
<td>Culture Tube</td>
<td>38 mm D x 200 mm H</td>
<td>38 mm</td>
<td>100 – 120 mL</td>
</tr>
<tr>
<td>0.9 L Glass Jar</td>
<td>90 mm D x 165 mm H</td>
<td>75 mm</td>
<td>500 mL</td>
</tr>
<tr>
<td>1.8 L Glass Jar</td>
<td>135 mm D x 150 mm H</td>
<td>95 mm</td>
<td>1000 mL</td>
</tr>
<tr>
<td>Nalgene Jug</td>
<td>150 mm Square x 250mm H</td>
<td>82 mm</td>
<td>1000 mL</td>
</tr>
<tr>
<td>Nalgene Jug</td>
<td>150 mm Square x 250mm H</td>
<td>82 mm</td>
<td>2000 mL</td>
</tr>
</tbody>
</table>

D = Diameter, H = Height

In a Nalgene jug, 1000 mL of media is about 65 mm deep; 2000 mL is about 130 mm deep. Some large or long samples and SIP preparations will only fit in the Nalgene jugs. The higher fees reflect increased costs for media, significantly greater time for media production and media quality control, extended time for sterility testing and significantly greater incubator space requirements.

Note: To expedite processing of your dose audit samples, please call us prior to sending samples so that we can schedule your tests.

Some samples are difficult to aseptically cut and transfer to media containers. If possible, please include 3 to 5 additional samples with your dose audit sample submission.
STERILITY TESTING

Sterility testing of products and/or biological indicators (i.e. spore strips) exposed to a sterilization process is an important part of all sterility assurance programs. Most manufacturers of EO sterilized medical devices monitor their EO sterilization loads with B. subtilis spore strips and release their products for distribution based on negative sterility test results of the spore strips. The spore strips may be placed inside or outside the product depending on the type of spore strip testing performed during the validation. The spore strips should be distributed in locations throughout the sterilization chamber. A positive control (i.e. unprocessed spore strip) should be included with all spore strip sterility tests. These routine sterility tests must be supplemented periodically with more extensive cycle validations.

Routine lot release of terminally sterilized medical devices by means of end product sterility testing is not recommended for several reasons. The bioburden of most medical devices generally is a lesser challenge to the sterilization process than biological indicators, and overkill cannot be demonstrated. Statistically, the probability that a sterility test of 20 or 40 product samples will detect nonsterile samples among a much larger number of products is very limited. Also, it is generally recognized that the process of sterility testing has a significantly lower sterility assurance level than most validated terminal sterilization processes. However, end product sterility testing of medical devices is occasionally performed as part of investigations or to support other information in making a lot release decision.

SPORE STRIPS ONLY

This test is appropriate for devices sterilized by steam or ETO in a validated cycle. Generally 10 – 20 spore strips are used to monitor a cycle. Spore strips are cultured in SCDM and then usually incubated for 7 days. Shorter incubation times can be validated.

PRODUCT WITH SPORE STRIPS

This test is generally used for fractional and half cycles in ethylene oxide and steam sterilization validations. Spore strips are normally cultured in SCDM and incubated for at least 7 days. Products are usually tested in SCDM and FTM and incubated for 14 days.

PRODUCT ONLY – DIRECT TRANSFER OR FLUID PATH

Entire devices or portions of devices are rinsed with or submerged in Soybean Casein Digest Medium and Fluid Thioglycolate Medium. Usually 20 product samples are required. If the product cannot be divided to provide for each medium type, 40 samples are required. Incubation time is 14 days.

INOCULATED PRODUCT

For this test, product samples which have been inoculated with a microorganism that is resistant to the sterilization process are used as biological indicators. This test is used most frequently to verify steam penetration into an area of a medical device that is too small to be monitored with a spore strip. It is often used as part of the sterilization validation of a reusable medical device. Ten or more samples are usually required. Incubation time is 7 days.
WHY NORTHVIEW SHOULD CONDUCT YOUR DOSE AUDITS AND STERILITY TESTS

- Over two decades of experience providing sterility testing services for medical device and pharmaceutical manufacturers.
- Three strategically located laboratories.
- Northview's proximity to radiation and ETO contract sterilization facilities minimizes sample transmission time. Pick-up service is available at some sterilization facilities.
- Northview works closely with contract sterilizers to expedite the processing of your samples.
- Northview has extensive standard operating procedures covering all aspects of sterility testing operations.
- Product sterility testing is aseptically performed in a certified cleanroom by experienced technicians.
- Samples for lot release are put on test the day they are received.
- Environmental controls are performed for all sterility tests.
- Samples are monitored daily. Clients are immediately advised by phone should growth occur.
- Growth occurring in sterility tests is thoroughly investigated.
- Reports with test results are faxed and/or mailed the day required incubation ends.
MICROBIAL ENVIRONMENTAL MONITORING

Medical device manufacturers use microbial environmental monitoring programs to evaluate the effectiveness of cleaning and disinfection procedures and to assess the overall microbial cleanliness of their manufacturing environment. An effective program to control microorganism levels in the manufacturing environment is essential to minimize the bioburden on the medical device being manufactured and reduce potential for bioburden spikes. Spikes in the bioburden of finished medical devices can cause a reduction in the sterility assurance level for the product.

Air and surface samples are taken during routine production operations to obtain a microbiological profile of the manufacturing environment. Observation of work practices are made during the survey. Test data and other information is evaluated to determine what actions can be taken to reduce or stabilize the bioburden of the medical device. Once an intensive survey has been conducted and strategic sampling locations are determined, samples can be taken by the manufacturer's personnel on a regular schedule. Northview can provide the necessary supplies for microbiological sampling. Exposed materials are returned to Northview for enumeration and report.

If any major changes are made at the facility or in the manufacturing process, or if product bioburden levels increase significantly, a re-evaluation of environmental conditions should be conducted. For additional information about environmental monitoring, refer to USP 24, general chapter <1116>.

Northview works with many of its clients to establish and maintain cost-effective programs to meet FDA requirements for monitoring the microbial cleanliness of their manufacturing environments and assessing the efficacy of production area disinfection procedures. Our microbiologists can train quality assurance and manufacturing personnel to collect microbial environmental samples. Following is an overview of aspects of a microbial environmental monitoring program. Please call the Microbiology/Sterility Assurance departments at any of our facilities to order supplies or for more information.

MICROBIAL ENVIRONMENTAL MONITORING PLAN FOR PRODUCTION AREAS

- Review manufacturing procedures
 - movement of materials
 - personnel practices
 - cleaning and disinfection procedures
- Visit production and packaging areas. Observe manufacturing process.
- Evaluate possible sources of microorganisms and potential to impact product bioburden.
 - water and ancillary fluid used in production
 - HVAC systems
 - manufacturing equipment
 - manufacturing personnel
- Formulate sampling plan.
 - prepare a production area schematic
 - identify sites for air and surface samples
 - determine if water or other process fluid sampling is required
- Collect environmental samples.
 - identify each with a site code and the date and time collected
- Ship samples for next day delivery to Northview.
- Northview incubates samples at temperatures appropriate for the various environmental samples.
- Following incubation, bacteria and mold colonies are enumerated.
 - microorganisms will be identified if desired
- Results are reported to client.
- Results are evaluated by a Northview microbiology manager and the client.
- Appropriate follow-up action is recommended.
MATERIALS USED FOR MICROBIAL ENVIRONMENTAL MONITORING

Biotest™ Air Sampler: A mechanical instrument which pulls in a preset volume of air, impacting microorganisms onto a strip filled with a nutrient agar.

Contact Plate: A petri dish with an elevated convex surface of nutrient agar. It is used for taking samples of flat surfaces. The lid of the dish is removed. The agar surface is pressed lightly against the surface to be sampled. The lid is then immediately replaced on the dish.

Fallout Plate: A petri dish containing a nutrient agar. It is used for semi-quantitative air sampling. The dish is placed in the desired location, the lid is removed and the agar is exposed for a defined amount of time, usually for 30 minutes to 2 hours. Organisms settle on the surface of the agar.

DE Neutralizing Agar: A neutralizing agar formulated with Tween 80 (a surfactant), lecithin (a general purpose neutralizer), sodium thiosulfate and sodium thioglycollate. This combination is used to neutralize chlorine, glutaraldehyde, iodophor, phenolic and quat based disinfectants.

Letheen Agar: A neutralizing agar formulated with Tween 80 and lecithin. This combination is used to neutralize alcohol, phenolic and quaternary ammonium chloride based disinfectants.

Rose Bengal Agar: A neutral pH agar which contains stain that inhibits bacterial growth. It is used to select for yeast and molds.

Sabouraud Dextrose Agar: A high sugar, low pH agar used to select for yeast and molds.

Sodium Thiosulfate: A chemical added to agar to neutralize halogen based disinfectants, such as bleach.

Sterile Buffer Solution w/Swab: The buffer solution is supplied in a 10 mL screw cap test tube. The sterile swab is provided in a paper pouch. Swabs are used for taking samples of non-flat surfaces. The swab is moistened by dipping it in the sterile buffer solution. The surface to be sampled is swabbed. The tip of the swab is then cut or broken into the test tube of solution and the cap is replaced on the test tube.

Tryptic Soy Agar: A general purpose nutrient agar used to culture many bacteria and some fungi.

MICROBIAL ENVIRONMENTAL SUPPLIES AND SERVICES

- Environmental Survey – Microbiological (*Performed by Northview Personnel*)
- Microbial Environmental Monitoring Supplies:
 - Fallout Plate, 100 mm, Tryptic Soy Agar (TSA)
 - Fallout Plate, 100 mm, Sabouraud Dextrose Agar (SDA)
 - Contact Plate, Letheen Agar
 - Contact Plate, DE Neutralizing Agar
 - Biotest Air Sampler Strip, TSA
 - Biotest Air Sampler Strip, SDA or Rose Bengal Agar
 - Biotest Centrifugal Air Sampler – Daily Rental
 - Sterile Buffer Solution w/Dacron Swab
 - Sterile Specimen Cups, Screw Cap, 120 mL
 - Microbial Samples Enumeration and Report:
 - Fallout Plate Count
 - Contact Plate Count
 - Biotest Air Sampler Strip Count
 - Buffer Solution – Aerobic Count (Membrane Filtration)
ACCELERATED AGING – EXPIRATION DATING STUDY

An accelerated aging study is used to support the assignment of an expiration date to a sterile medical device. Accelerated aging is a process in which products and packaging are stored in an environmental chamber at an elevated temperature to simulate a longer period of real time aging. Northview generally uses the following sequence to simulate one year of aging at a room temperature of 23°C:

Accelerated Aging Sequence = 1 year at 23°C
20 – 21 days at 55°C with 75% R.H.
24 hours at -25°C to -10°C
20 – 21 days at 55°C with <20% R.H.

Following aging, packaging and product can be subjected to a variety of tests to evaluate the effects of the aging process. For packaging, testing options include distribution simulation, seal strength and package integrity by dye penetration and/or microbial challenge. For products, testing should include applicable physical performance testing and visual comparison to products that have not been aged.

Accelerated aging studies are normally conducted in accordance with a written protocol. Products that have been exposed to a validated sterilization process should be used in these studies. A typical study includes testing of samples after several aging intervals (e.g. 1, 3 and 5 year equivalency). The protocol specifies the aging intervals and the tests to be performed after each interval. The sample requirements are based on the number of aging intervals and the tests required after each interval.

Northview can provide accelerated aging storage services when other testing is not required. Alternate aging conditions are also available. Please call for environmental chamber availability and pricing or for a quote for a complete accelerated aging – expiration dating study.

REAL TIME AGING – EXPIRATION DATING STUDY

A real time aging study must be used to support the assignment of an expiration dating claim that is based on an accelerated aging study. Products are usually stored at controlled room temperature and tested annually for as many years as desired. The tests should be the same as those used in the accelerated aging study.

PACKAGE INTEGRITY TESTING

Package integrity tests are used to detect packaging problems that could adversely affect the sterility of a medical device. Sterile products are subjected to an environmental stress intended to simulate extreme conditions that a product might encounter in shipping or storage. The product packaging is then subjected to microbial challenge or dye penetration testing to determine if it has retained its properties as a microbial barrier. Eleven samples are recommended for this test.

ACCELERATED AGING AND PACKAGING TESTS

- Accelerated Aging – Expiration Dating Protocol
- Accelerated Aging in Environmental Chambers
- ASTM Distribution Simulation (2 – 3 final shipping cases)
- Seal Peel Test (10 products/test station)
- Package Integrity by Microbial Challenge (11 products/test station)
- Package Integrity by Dye Penetration (11 products/test station)
BACTERIAL ENDOTOXINS (LAL) TEST

A pyrogen is the product of the action of heat on an organic substance and, in medical terms, is frequently described as a fever producing substance. The most potent pyrogens originate from gram negative bacteria, which are common water-borne organisms. Although not entirely accurate, the terms pyrogen and endotoxin are often used interchangeably. Detection of bacterial endotoxin contamination is essential to insure the safety of certain medical devices. The Bacterial Endotoxins Test using Limulus Amebocyte Lysate (LAL) is recommended for the detection of endotoxins in medical devices. Any product that is labeled as nonpyrogenic must be tested to verify that claim. Medical devices with bloodstream or cerebrospinal fluid contact must also be tested for the presence of bacterial endotoxins.

Whether or not a device is considered pyrogenic is based on the amount of endotoxin the device contains in correlation to the accepted human tolerance of 5 endotoxin units (EU) per kilogram of body weight. Nonpyrogenic water is used to extract medical devices. Historically, the USP rabbit pyrogen test was used to test the extract. It specified a 40 mL extract per device with a 10 mL/kg injection volume. This is equivalent to 40 mL tested against 0.5 EU/mL LAL reagent sensitivity, and an allowable limit of 20 EU per device.

The LAL test is usually performed on a composite of the extracts of 10 samples. It is possible that one device of the composite could contain > 20 EU, when others in the composite would contain < 20 EU, and the composite test would pass. The most endotoxin one device could contain, if all others in a 10 sample composite contained zero endotoxin, would be 200 EU. This is still below the human tolerance of 350 EU, based on an average human body weight of 70 kg \((70 \text{ kg} \times 5 \text{ EU/kg} = 350 \text{ EU})\). In a composite test, 20 EU is the average endotoxin limit for most medical devices. However, the limit for the devices which contact cerebrospinal fluid is 2.15 EU per device. The maximum allowable extraction volume is calculated to insure that the average endotoxin burden per device in the LAL test does not exceed these limits.

FDA has published guidelines outlining validation procedures for endotoxin testing of finished products using the LAL test. This document is called *Guideline on the Validation of the Limulus Amebocyte Lysate Test for Human and Animal Parenteral Drugs, Biological Products and Medical Devices*, December 1987.

For medical devices, ten sterile samples per lot are normally required for the LAL test. One test is performed on a composite of 10 samples. Because water is a source of pyrogens, it is important to routinely monitor water systems using the bacterial endotoxins test. For process water samples, the amount of sample required is 10 mL. Please contact Northview if you need sample collection containers. Both kinetic and gel clot methods are available.

BACTERIAL ENDOTOXINS TESTS

- LAL Validation – Inhibition and Enhancement
- Medical Devices – Immersion
- Medical Devices – Fluid Path
- Water
ETHYLENE OXIDE RESIDUALS ANALYSES

About half of the sterile disposable medical devices used in the United States are sterilized with gaseous ethylene oxide (EO). This method is widely used because it avoids the heat and radiolytic stress often associated with steam or radiation sterilization. It is also commonly used for kits which contain a drug or component that cannot be sterilized with radiation.

EO gas penetrates the intricate design configurations and cavities which are often found in complex medical devices. Despite the volatility of this gas, certain plastics and polymers readily adsorb EO and retain it for a period of time following sterilization. If chloride ions or moisture are present, EO will react with them to form ethylene chlorohydrin (ECH) and ethylene glycol as by-products. Both EO and ECH are acknowledged as physiological toxins.

Acceptable limits for ethylene oxide residuals are published in AAMI/ISO 10993-7, *Biological evaluation of medical devices—Part 7: Ethylene oxide sterilization residuals*. This standard specifies the maximum allowable dose (mass) of EO and ECH residues which can be delivered to a patient. Limits are based on the use classification for the device: limited exposure (24 hours), prolonged exposure (up to one month) or permanent exposure (lifetime use).

AAMI/ISO 10993-7 provides test methods for analyzing ethylene oxide residuals in sterilized products. To simulate patient exposure, product samples are generally subjected to an aqueous extraction. The extract is analyzed for EO and ECH (and EG in certain circumstances) by gas chromatography. To determine if residue levels are acceptable, the weight of the device or device component being tested is required. Results are calculated in relation to the daily dose (mg/day) for daily, monthly and lifetime exposure, and are also reported in ppm (parts per million).

An alternate method for extracting EO from a sample is the headspace method. This method is also referred to as the exhaustive method because the entire amount of EO present in the sample is determined. A defined portion of the device is weighed and transferred to a sampling vial. EO is thermally extracted from the sample and driven into the headspace of the vial. The gas in the headspace is analyzed by gas chromatography. Results are reported in ppm (parts per million), and calculated to AAMI/ISO limits.

Northview participated in the round robin studies that AAMI sponsored to verify analytical reproducibility of the AAMI EO analytical methods. Our experienced analysts are skilled in all of the current techniques for determining residue levels and work with many clients to develop appropriate extraction protocols depending on the end-use of their products. Test results will be reported in a format that includes a summary of the ISO classification guide and test specifications for each applicable class.

For EO residuals analyses, we generally recommend that two sterile samples be submitted. Additionally, AAMI/ISO recommends that one non-sterilized control sample be tested to insure that the product does not cause chromatographic interference during testing. AAMI recommends that samples be shipped under dry ice.

ETHYLENE OXIDE RESIDUES TESTS

- Ethylene Oxide Residual Analysis (EO only)
 - Aqueous Extraction
 - Headspace Sampling
 - Acetone or DMF Extraction
- Ethylene Chlorohydrin Residuals Analyses
ETHYLENE OXIDE DISSIPATION STUDIES

Ethylene oxide will slowly dissipate from sterilized devices. It is useful to determine how long it takes for the residual EO to dissipate to a target level. By periodic sampling and analysis of the product, an EO dissipation curve can be established. This data can be used to establish quarantine times prior to product release, or to provide more information about the changes in product EO levels resulting from manufacturing, packaging or sterilization process changes. Either aqueous or headspace extraction methods mentioned on the previous page may be used in establishing dissipation curves.

To determine an ethylene oxide dissipation curve, EO analyses of samples at three to five time points are normally recommended (e.g. 1, 3, 5, 7 and 10 days after sterilization). One sample per time point and one non-sterilized control sample are required.

ISO GUIDELINES FOR STERILANT RESIDUES

DEVICE CLASSIFICATION

Limited Exposure: devices whose single or multiple use or contact is likely to be less than 24 hours;

Prolonged Exposure: devices whose single, multiple, or long-term use or contact is likely to exceed 24 hours but not 30 days;

Permanent Contact: devices whose single, multiple, or long-term use or contact is greater than 30 days.

ALLOWABLE LIMITS FOR ETHYLENE OXIDE AND ETHYLENE CHLOROHYDRIN

Permanent Contact Devices

The average daily dose of EO to patient shall not exceed 0.1 mg/day. In addition, the maximum EO dose shall not exceed: 20 mg in the first 24 hours, 60 mg in the first 30 days, and 2.5 grams in a lifetime.

The average daily dose of ECH to patient shall not exceed 2 mg/day. In addition, the maximum ECH dose shall not exceed: 12 mg in the first 24 hours, 60 mg in the first 30 days, and 50 grams in a lifetime.

Prolonged Exposure Devices

The average daily dose of EO to patient shall not exceed 2 mg/day. In addition, the maximum EO dose shall not exceed: 20 mg in the first 24 hours, and 60 mg in the first 30 days.

The average daily dose of ECH to patient shall not exceed 12 mg in the first 24 hours, and 60 mg in the first 30 days.

Limited Exposure Devices

The average daily dose of EO to patient shall not exceed 20 mg.

The average daily dose of ECH to patient shall not exceed 12 mg.
MORE ABOUT NORTHVIEW

Quality testing services and client satisfaction have been our primary objectives throughout the 29 years that Northview Biosciences has been servicing the pharmaceutical, medical device and related industries. During this period, our staff has increased to over one hundred dedicated professionals. From our original location in Northbrook, Illinois, we have expanded to Hercules, California and Spartanburg, South Carolina. Our success grows from our commitment to the highest level of quality in all of our operations.

cGMP COMPLIANCE

Northview and all of its medical device and pharmaceutical clients are required to operate in accordance with cGMP (current Good Manufacturing Practices) regulations. Northview is committed to perform all testing in accordance with our understanding of the cGMPs. A comprehensive body of standard operating procedures covers all aspects of our laboratory operations. We are routinely inspected by the FDA and auditors from many of our clients.

Northview does not assume any responsibility for the appropriateness and/or regulatory acceptance of any client's testing program. It is the responsibility of each client to assess the testing and test validation requirements of their products and quality control systems. Our staff will endeavor to alert clients of testing programs that may need further consideration to determine conformance to cGMPs.

GLP COMPLIANCE

For some submissions, the FDA and EPA require that testing be performed in accordance with GLP (Good Laboratory Practice) regulations. It is the client's responsibility to determine when GLP treatment is required and to inform Northview in writing of this requirement at the time of sample submission. Northview will perform testing in accordance with GLPs when requested by the client. (There is an additional charge for GLP treatment.)

Please contact us if you need additional information. Our staff would be pleased to have you visit and audit our laboratories at your convenience.